Superhydrophobicity and Oleophobicity on Paper Using Plasma Treatments

Lester Li (PhD student; PSE Fellow), Balamurali Balu (PhD 2009; PSE Fellow), Victor Breedveld and Dennis W. Hess (PIs)
Superhydrophobic Paper via Plasma Processing

- Superhydrophobicity defined as having a CA > 150°
- Requirements for superhydrophobicity
 - Surface roughness
 - Low Surface Energy
- Plasma process
 - Selective etch of amorphous cellulose

Untreated \rightarrow O₂ plasma etch \rightarrow deposition (~100 nm layer)
(create nano-roughness) (low surface energy)

Balu et al., Langmuir, 24, 4785 (2008)
Tunability of Droplet Adhesion

- All substrates are superhydrophobic
- Ability to tune adhesion/hysteresis

Selective Adhesion on SH Paper

- Wax dots printed onto SH paper
 - Preferential adherence to wax dot

- Difference in hydrophobicity enables sampling from bulk droplets

Balu et al., *Lab Chip* 9, 3066–3071 (2009)
Sampled Volume Control

- Sampled volume is dependent on the hysteresis of the printed dot.

Increasing Hysteresis

Hysteresis can be controlled...

- Chemically
 - Different wax types
- Physically
 - Surface roughness from sandpaper

Li et al., JAST (In Press)
Droplet Splitting

• Print designs with multiple islands
 ○ Bulk droplets can be split into several smaller droplets
• Biomedical testing

• Proof of concept with glucose colorimetric agent

Li et al., JAST (In Press)
Other Superhydrophobic Surfaces

• Same fundamental idea
 - Surface roughness
 - Low Surface Energy

• Superhydrophobic stainless steel
 - Etched in HF acid and nitric acid passivation
 - Fluoropolymer deposition

304 Stainless Steel

Li et al., *Langmuir* (Submitted)
Other Superhydrophobic Surfaces

316 Stainless Steel

Li et al., Langmuir (Submitted)
Other Superhydrophobic Surfaces

- Superhydrophobic Teflon (PTFE)
 - Oxygen plasma etch
 - No further deposition

Etched (155°) Unetched (90°)

2 μm
Current Work: Oleophobic Paper

• Oleophobic paper made using same process
 o Oxygen plasma etch
 o Fluoropolymer deposition

• Current work focused on fabricating robust superhydrophobic and superoleophobic paper substrates

Hexadecane (> 120°) Water (> 150°)
Summary

• Superhydrophobic paper
 o Plasma process
 o Oxygen etch and fluoropolymer deposition

• Droplet sampling
 o Controllably sample volumes from a bulk droplet
 o Biomedical applications

• Other superhydrophobic surfaces
 o 304 and 316 Stainless Steels
 • HF acid etch and nitric acid passivation
 o Teflon

• Extension of same fundamental parameters to oleophobic paper