Facilities

IPST Prepares to Welcome Civil and Environmental Engineering School; Refurbishes Building

IPST will welcome 80 engineers to the building when the Civil and Environmental Engineering building is renovated starting late this spring. They will be with us approximately twelve months. We expect to generate significant energy from the new opportunities to interact and collaborate. The move has triggered long overdue improvements to the 20-year-old IPST Tricentennial Building such as carpeting, paint, and furnishings for the well-used seminar room. We have added a flat-screen video storyboard to the lobby, highlighting students, faculty and research at IPST. Critical elements of the project are to be completed in time for the members’ meeting in April.

IPST’s Pressurized Gasifier will Move to GA Tech’s New Carbon-Neutral Energy Solutions Building in 2012

In the summer of 2012, IPST’s Pressurized Entrained Flow Reactor (a.k.a. PEFR or “gasifier”) will become part of the new NIST-funded Carbon-Neutral Energy Solutions (C-NES) building now under construction near the Ben Zinn Aerospace Lab off Techway Drive. This new facility will be used to develop renewable energy technologies. The building is carbon-neutral, with advanced energy efficient design and a roof-top photovoltaic power system for net-metering. The building will include high-bay space for large equipment such as the PEFR, mid-bay labs for small pilot-scale reactors, and conventional lab and office space. We anticipate the PEFR will be off-line for 3 months during the move this summer.
Gasifier Move, continued

Once installed, it will continue in its current capacity to study the fundamentals of thermal energy processes. The PEFR is used for studies in combustion, gasification, and pyrolysis over a wide range of conditions. It was acquired by IPST in 1998 and has been used for research in black liquor, biomass, coal, pet coke, sludge, and a variety of other fuels. It allows the study of high-temperature gas-solid chemistry and reaction rates by creating highly controlled experimental conditions. The resulting data and kinetic models can then be used to either design industrial-scale thermal processes, or develop entirely new processes.

Details can be found at http://www.gatech.edu/newsroom/release.html?nid=48988